On a New Subclass of Harmonic Meromorphic Functions with Fixed Residue Ξ
نویسنده
چکیده
f = u + iv is a complex harmonic function in a domain D if both u and v are real continuous harmonic functions in D. In any simply connected domain D ⊂ C, f is written in the form of f = h+g, where both h and g are analytic in D. We call h the analytic part and g the co-analytic part of f . A necessary and sufficient condition for f to be locally univalent and orientation preserving in D is that |h′| > |g′| [3].There are many papers on harmonic functions defined on the domain U = {z : |z| < 1} [1,4,5,6].
منابع مشابه
Geometric Studies on Inequalities of Harmonic Functions in a Complex Field Based on ξ-Generalized Hurwitz-Lerch Zeta Function
Authors, define and establish a new subclass of harmonic regular schlicht functions (HSF) in the open unit disc through the use of the extended generalized Noor-type integral operator associated with the ξ-generalized Hurwitz-Lerch Zeta function (GHLZF). Furthermore, some geometric properties of this subclass are also studied.
متن کاملOn Certain Subclass of Meromorphic Harmonic Functions with Fixed Residue (dedicated in Occasion of the 70-years of Professor
In this paper, we consider some properties such as growth and distortion theorem, coefficient problems, linear combinations for certain subclass of meromorphic harmonic functions with positive coefficients.
متن کاملCertain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators
The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...
متن کاملOn Integral Operator and Argument Estimation of a Novel Subclass of Harmonic Univalent Functions
Abstract. In this paper we define and verify a subclass of harmonic univalent functions involving the argument of complex-value functions of the form f = h + ¯g and investigate some properties of this subclass e.g. necessary and sufficient coefficient bounds, extreme points, distortion bounds and Hadamard product.Abstract. In this paper we define and verify a subclass of harmonic univalent func...
متن کاملA new subclass of harmonic mappings with positive coefficients
Complex-valued harmonic functions that are univalent and sense-preserving in the open unit disk $U$ can be written as form $f =h+bar{g}$, where $h$ and $g$ are analytic in $U$. In this paper, we introduce the class $S_H^1(beta)$, where $1<betaleq 2$, and consisting of harmonic univalent function $f = h+bar{g}$, where $h$ and $g$ are in the form $h(z) = z+sumlimits_{n=2}^inf...
متن کامل